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Abstract
An asymmetric exclusion process comprising positive particles, negative
particles and vacancies is introduced. The model is defined on a ring and
the dynamics does not conserve the number of particles. We solve the steady
state exactly and show that it can exhibit a continuous phase transition in
which the density of vacancies decreases to zero. The model has no absorbing
state and furnishes an example of a one-dimensional phase transition in a
homogeneous non-conserving system which does not belong to the absorbing
state universality classes.

PACS numbers: 05.70.Fh, 02.50.Ey, 05.40.−a

One-dimensional driven diffusive systems have been a subject of extensive study in recent years
[1–3]. A prototypical model for studying these systems is the asymmetric exclusion process
in which particles move stochastically with a preferred direction and hard-core exclusion [4].
In this model the local dynamics conserves the particles. Asymmetric exclusion processes
with a single species of particles do not exhibit phase transitions on a ring geometry. On the
other hand, open systems in which the particle number is not conserved at the boundaries can
exhibit a variety of phase transitions [2, 5]. Generalizations of these models to more than one
species of particles have shown that phase transitions and long-range order do exist in these
systems even on a ring geometry [6–10].

Generally speaking, one-dimensional models that exhibit phase transitions are either (a) of
the asymmetric-exclusion-process type with a drive and conserving bulk dynamics or (b) have
non-conserving bulk dynamics with one or more absorbing states. The latter case is related
to the directed percolation or other absorbing state universality classes [11]. It is therefore
of interest to find a one-dimensional model where the bulk dynamics is not conserving that
exhibits a phase transition unrelated to the absorbing state universality classes.

In this letter we introduce such a model and solve for its steady state exactly. The model
is defined on a ring of L sites where each site can be occupied by either a positive (+) particle,
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a negative (−) particle or a vacancy (0). The model evolves through the following conserving
rates

+ 0
1→ 0 + 0 − 1→− 0 + − 1

�
q

− + (1)

augmented by the following non-conserving rates

+ 0
w
�
1

0 0 0 − w
�
1

0 0. (2)

Thus, the model generalizes the model of Derrida et al [7] and Arndt et al [10] through the
introduction of the process of creation and annihilation of particles. Note that any configuration
can be reached from any other except states with no vacancies which are not dynamically
accessible.

The rate w controls the density of vacancies, denoted by θ , in the system. For large w one
expects the density of vacancies to be high and for small w it is expected to be low. We will
show that for q < 1 the dependence of θ on w is not smooth and that for small enough w, θ

is zero in the thermodynamic limit. Thus the model exhibits a phase transition from a ‘fluid’
phase with a finite θ to a ‘maximal current’ phase where θ is zero (the nomenclature will be
explained below). The transition occurs at a critical value wc > 0. The phase transition is
found to be continuous with

θ ∼ |w − wc|β (3)

where β = 1. For q > 1, on the other hand, the system is always strongly phase separated
[8–10] with a single zero and two extensive pure domains of positive and negative particles.
Here there is no phase transition as w is varied.

A powerful technique for solving the steady states of asymmetric exclusion processes is
the matrix product ansatz [12]. This involves representing the steady-state weights as the trace
of a product of matrices which depends on the microscopic configuration. The matrices then
obey certain algebraic rules which are derived from the dynamics of the model. This technique
has yielded the exact behaviour at the various phase transitions in many asymmetric exclusion
models. The transitions solved within the matrix product have been found to be robust for a
large class of systems [13]. However, in most models solved so far using the matrix product,
particle numbers are conserved in the bulk (two exceptions are [14] and [15]). In this work, we
employ the matrix product technique to obtain an exact solution for the steady state and phase
transitions of the model defined by (1) and (2). It turns out that despite the non-conserving
dynamics of the present model we can use the same matrices that have been previously used
to solve models with conserving dynamics.

We now proceed to outline the matrix product solution for the steady state. The steady-
state weight of a configuration C is represented by the trace of a product of matrices:

WL(C) = Tr
L∏

i=1

[
δτi ,+D + δτi ,−E + δτi ,0A

]
(4)

where L is the system size and τj = +,−, 0 if site j is occupied by a +,− or 0, respectively.
That is, a matrix D (E) represents a positive (negative) particle and A represents a vacancy. It
is easy to show using the technique of [7, 12] that D,E and A should satisfy

DE − qED = D + E DA = AE = A AA = wA (5)

to give the correct steady-state weights. These equations can be satisfied by choosing

A = w|V 〉〈V | (6)
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where 〈V |V 〉 = 1, D|V 〉 = |V 〉 and 〈V |E = 〈V |. Then D, E and 〈V | are identical to
the matrices and vectors studied in [16, 17] where they are used to solve the single-species
partially asymmetric exclusion process with open boundaries.

We now wish to calculate the normalization, i.e. the partition function, which is given by
the sum of the weights (4) of all accessible configurations:

ZL = Tr[(A + D + E)L − (D + E)L]. (7)

Using the form (6) of A we first write the sum of the weights of configurations with exactly
M vacancies on a lattice of size L:

ZL,M = wM

M∏
µ=1

∞∑
nµ=0

〈V |Cnµ |V 〉δ∑
µ nµ,L−M (8)

where C = D + E. The sum over each nµ corresponds to the possible number of particles
between two consecutive zeros. The delta function enforces the constraint that the total number
of particles equals L − M and the factor wM arises from the M zeros. This form neglects the
degeneracy in placing a given configuration {nµ} on a ring geometry, which is bounded from
above by L. It is straightforward to check using bounds on the true partition function that this
does not affect any of the results presented here.

In order to calculate the partition function ZL = ∑L
M=1 ZL,M , it is convenient to replace

the delta function by a contour integral. Taking the limit of the sum over M to infinity yields

ZL =
∞∑

M=1

∮
dz

2π i

wM

zL−M+1

M∏
µ=1

∞∑
nµ=0

znµ〈V |Cnµ |V 〉 (9)

=
∮

dz

2π i zL+1

[
zwU(z)

1 − zwU(z)

]
(10)

where U(z) is defined as

U(z) =
∞∑

n=0

znGn with Gn ≡ 〈V |Cn|V 〉. (11)

The weight Gn has been studied before. It is the normalization sum of the single-species
partially asymmetric exclusion model on an open lattice of size n and with particle injection
rate 1 at the left boundary and removal rate 1 at the right boundary [16, 17].

Below, we shall consider the density of vacancies given by

θ = lim
L→∞

M

L
= lim

L→∞
w

L

∂ lnZL

∂w
(12)

where M is the average number of vacancies in the system. We shall also consider the current
JL of positive particles (which is equal to that of the negative particles). We define the current
in the same way as for the conserving system although here the density is not conserved. Thus
taking into account the inaccessibility of configurations with no vacancies we find

JL = 1

ZL

Tr[(DA + DE − qED)(C + A)L−2 − (DE − qED)CL−2] = ZL−1

ZL

(13)

where we have used the algebraic rules (5) and form (7) of ZL.
We now discuss the two distinct cases q < 1 and q > 1 separately:

(i) The case of q < 1
Here the normalization ZL can be evaluated for large L from integral (10) by the saddle

point method. This method amounts to working in the grand canonical ensemble. The term in
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the square brackets of (10) is then just the grand canonical partition function and ZL ∼ (z∗)−L

where z∗ is the saddle point value of z, i.e. the fugacity. Thus, in the thermodynamic limit,
we see from (13) that JL → z∗ ≡ J which identifies the particle current in the system as the
fugacity. Also, we see from (12) that the density of vacancies is given by

θ = −w
∂ ln z∗

∂w
. (14)

Thus one may identify θ as the order parameter and −ln z∗ = −ln J as the analogue of the
free energy density.

The saddle point equation for integral (10) may be written as

L = 1

1 − wzU(z)

[
zU ′(z)
U(z)

+ wzU(z)

]
. (15)

For L → ∞ this equation is satisfied either by 1 − wzU(z) ∼ O(1/L) or by the term inside
the brackets being of order L. To analyse which of the two scenarios pertains one needs to
consider the properties of the increasing function U(z). Note from (11) that the convergence
of U(z) is determined by the large n form of Gn. For q < 1 this quantity is known [16, 17] to
behave for large n as

Gn 	 a
K−n

n3/2
(16)

where

K = 1 − q

4
and a = 4√

π

[ ∞∏
i=1

(1 − qi)3

(1 + qi)4

]
. (17)

From (16) one deduces that U(z) converges for z � K and U ′(z) diverges as z → K . Thus,
when 1 − wzU(z) = 0 for some z � K we solve the saddle-point equation (15) by choosing
z∗ so that 1 − wz∗U(z∗) ∼ O(1/L). On the other hand, when 1 − wzU(z) > 0 for all z � K ,
the divergence must come from the term in the square brackets of equation (15) and we need
z∗ = K(1 − O(1/L2)). This can be deduced by noting that U ′(z) ∼ |K − z|−1/2 for z → K .
Thus, in the thermodynamic limit L → ∞, z∗ increases to K as w is decreased to wc, given by

wc = 1

KU(K)
. (18)

Any further decrease in w leaves the value of z∗ unchanged. The critical rate wc(q) obtained
from this equation is plotted in figure 1. Using equation (14) one can see that for w > wc, θ

decreases as w decreases while for w < wc, θ = 0. Using U(z) − U(K) ∼ |K − z|1/2 it is
easy to show by expanding (15) that θ ∼ |w − wc| as w ↘ wc, recovering (3).

Since z∗ is the current of particles and it saturates at K = (1 − q)/4 for w < wc we refer
to this phase as the maximal current phase. We refer to the phase w > wc as the fluid since
the typical configuration is a disordered arrangement of +,− and 0.

(ii) The case of q > 1
For q > 1 it is known [17] that the n dependence of Gn is given by

Gn ∼
(

q

q − 1

)n

qn2/4. (19)

In this case U(z) diverges for all z > 0 and we have to impose cut-offs on the sums in
equation (9). That is, we write

ZL =
L∑

M=1

∮
dz

2π i

wM

zL−M+1

(
L−M∑
n=0

znGn

)M

. (20)
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Figure 1. Phase diagram in the q–w plane. The transition line between the fluid phase (A) and
the maximal-current phase (B) is given by equation (18). The transition into the strongly phase
separated state (C) takes place at q = 1.

From (19), it is clear that the dominant contribution to the sum is when M = 1 and n = L− 1.
Then JL = ZL−1/ZL 	 (q − 1)q−L/2−1. Thus, the current of particles is exponentially small
in the system size and the density of vacancies is zero. This corresponds to a strongly phase-
separated state with a single vacancy followed by an extensive block of positive particles (to
the right of the vacancy) followed by an extensive block of negative particles (to the left of the
vacancy).

Finally, we discuss the transition between q < 1 and q > 1. Using equations (16) and (17)
it is easy to show that as q → 1 from below, KU(K) tends to zero. Thus using equation (18)
we see that wc diverges as q → 1. Therefore at the q = 1 transition the system changes from
a maximal current phase J = (1 − q)/4 for q < 1 to a strongly phase-separated state with
J = O(q−L/2) for q > 1. In both of these phases the density of vacancies is zero. Therefore,
the transition has no relation to the non-conserving dynamics and is instead related to the
reversal of the bias [17]. The phase diagram of the model in the q–w plane is summarized in
figure 1.

It is interesting to make a comparison between the transition from the fluid to the maximal
current phase and the denaturation transition in DNA where the two strands of the molecule
unbind at a certain temperature. In models of this transition [18, 19] one assigns a Boltzmann
weight w to bound base pairs and a weight K−n/nc to unbound segments of length n. Here
K is a non-universal constant whereas c is a universal exponent depending on the dimension
and self-avoidance properties of the unbound DNA. For example, using a random walk model
yields c = 3/2 in three dimensions [18]. As temperature is raised and w decreases there is an
unbinding transition where the fraction of bound base pairs, θ , vanishes. The DNA models
and the present model can be related by identifying vacancies with bound pairs and blocks
of particles with unbound DNA loops. Then Gn corresponds to the weight of DNA loop of
length n and the grand canonical partition functions of the two systems are the same3.

The difference between the systems is that in the DNA the exponent c = 3/2 is a result of
the fact that the one-dimensional molecule is embedded in three dimensions. However, for the
model considered here the exponent 3/2 arises from truly one-dimensional phenomena related
to the currents flowing in the system. This can be seen from the relation between Gn and

3 To make the correspondence more explicit one has to identify U and V of the DNA literature with U − 1 and
wz/(1 − wz) of the present paper.
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the current of the single-species partially asymmetric exclusion process. More explicitly, for
such a process the current in a system of size n is given by Gn−1/Gn. Thus, the n dependence
of Gn is related to the n dependence of the current in a single-species system of size n. In
the context of the two-species model we have studied here such a system corresponds to an
uninterrupted block of particles, of length n, bounded between two vacancies. This picture
has recently been used to study the conditions for phase separation in conserving models [20].

The model can easily be generalized to contain two additional parameters α and β by
modifying rates (1) to read

+ 0
β→ 0 + 0 − α→ − 0 + − 1

�
q

− + (21)

and rates (2) to

+ 0
βw

�
1

0 0 0 − αw
�
1

0 0. (22)

Then one can take A = w|V 〉〈W | where βD|V 〉 = |V 〉 and α〈W |E = 〈W |. This
generalization should allow for a richer phase diagram than that presented here.

Finally, we point out that the transition from the fluid to the maximal current phase is
lost if particles are not conserved inside a block consisting only of particles. For example, a
process where + → 0 regardless of its neighbours destroys the maximal current phase.
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